
Adrian Tate Director, Cray EMEA Research Lab

EXPERTISE kickoff training

Memory Hierarchy



1. Hardware trends and design constraints

2. Traditional memory hierarchy 

3. Future memory hierarchy

● Whirlwind tour of memory hierarchies and future memories

● No detail, but pointers to further reading for the HPC students

● slides will be made available

This talk



● Memory is boring

● Why not just a single “flat” memory system?

● Fundamental issue with chosen model of computation

● Von Neumann Architecture (1945) 

Why do we need to do something with memory?

The von Neumann bottleneck :
computer system throughput is limited due to the relative 
ability of processors compared to top rates of data transfer



What is a memory hierarchy?

….

Costly

Cheap

Low bandwidth

High bandwidth

High latency

Low latency

!"

Today, we could also use a pentagonal 
pyramid with power consumption as a 
further edge/consideration

!#$"

!#



● Avoiding the Von Neumann bottleneck has historically been easy

● One or two-level cached memory

● Cache : A higher tier in the pyramid. 
● Fast (low latency, high bandwidth)
● Expensive
● Used often

● In modern times, this is not the case. 

● Let’s look at some trends and physics constraints in computer 
design

Von Neumann bottleneck



A supercomputer as scientific instrument

Fortran BLAS LAPACK MPI openMP C++ Python

DESY Glasgow DLS SRS ESRF

Scanning Electron Scanning tunnellingCT Scan Laser diode

m
icroscopes

synchrotron
supercom

puters CDC6600 CRAY-1 NEC SX ASCI RED Earth Simulator Titan

1960 1970 1980 1990 2000 2010



● Is the last point an anomaly? 

Then and now(-ish)

System Performance 160 MFLOPS 27 PFLOPS 1054687 x

Perf/node 160 MFLOPS 1.4 TFLOPS              8750 x      

Memory capacity /node        8 MB 37.5 GB 4687 x

Memory bandwidth /node     640 MB/s 275 GB/s 430 x

Memory bandwidth / flop      4 0.196 1/20 x 



● Moore’s Law : transistor count double roughly every 18 

months 

● Remains true but the performance associated with it has tailed off

● Dennard Scaling : as transistors get smaller their power 
density stays constant, so that the power use stays in 
proportion with area
● Ended in 2006
● Response – multicore processors

Laws (trends)



Dennard Scaling



● Processors are getting wider, not faster

● The bandwidth to memory has not widened at the same rate
● In fact, this trend has been visible for decades :

Memory vs CPU Speed trend



● memory wall. The processor asks for data much faster than 
memory can give it to the processor

● ILP wall: We've squeezed out all the parallelism at this level

● power wall: Power requirements increase exponentially with 
processor speed. Beyond a certain point, speed improvements 
not practical.

● Thermal wall : Processors can no longer sink the heat 
generated during computation

Trends summarised ( 4 “walls”)



● So the question often asked 
“why are CPUs not getting any faster”  
is actually irrelevant

● Although chips are not getting faster, they are still way too fast for the memory 
system to cope with

● Recall the bytes/flop issue we unearthed on slide 1

● Additionally, we have two modern constraints

● Power concerns
● Explosion of data (covered elsewhere)

● (Much) faster Data processing is what is needed

● This summarises “Exascale Computing” 
● Innovation in memory hierarchy is the response to this

Thoughts



● History of Computing 
● Turing’s Cathedral, George Dyson (book)

● Trends 
● Computer Architecture: A Quantitative Approach (5th Addition), 

David Patterson and John Hennessy
● Gets out of date quickly, so Google for modern trends 

● Georgia Tech Memory Hierarchy course: ECE 3056 course notes
● Cache and memory design

● Computer Architecture: A Quantitative Approach (5th Addition), 
David Patterson and John Hennessy

● Data-intensive science
● Synergistic challenges in data-intensive science and Exascale

Computing 
https://science.energy.gov/~/media/40749FD92B58438594256267425
C4AD1.ashx

Further Reading



● Want memory with
● Fast access 
● Large capacity
● Inexpensive 

● Incompatible requirements!

● Fortunately memory references 
are not random!

● Simulate the perfect memory
by understanding data access

● Exploit “Locality” 
● Temporal locality 
● Spatial locality 

Memory hierarchy (traditional)

L1

L2

DDR4

Disk/VM



DDR(4)

L2

L1

0.5	ns	

32	KB

20 GB/s

2MB

Disk/VM

~1  GB/s

128	GB

TB

CPU

64B

64B 7	ns	

64B 100	ns	

220 GB/s

500 GB/s

10	ms

Currently a well-
functioning hierarchy

4kB	(page)

(All numbers are ballparks)



Iteration Space Tiling

T1

T2

T3

T4

A

B

C



Iteration Space Tiling

T1

T2

T3

T4



Iteration Space Tiling

T1

T2

T3

T4



Iteration Space Tiling

T1

T2

T3

T4

Reuse T1!



Iteration Space Tiling

T1

T2

T3

T4

Reuse T1!



Iteration Space Tiling

T1

T2

T3

T4



Iteration Space Tiling

T1

T2

T3

T4

Reuse 

T2!



Iteration Space Tiling

T1

T2

T3

T4

Reuse 

T2!



Iteration Space Tiling

T1

T2

T3

T4



Iteration Space Tiling

T1

T2

T3

T4

Reuse 

T2!



Iteration Space Tiling

T1

T2

T3

T4

Reuse 
T2!



Iteration Space Tiling

T1

T2

T3

T4



Iteration Space Tiling

T1

T2

T3

T4

Reuse T3!



Iteration Space Tiling

T1

T2

T3

T4



Iteration Space Tiling

T1

T2

T3

T4 Reuse T4!



● For single level of cache is already hard
● Tile-size selection is NP-hard
● Even for one memory tier!

● Associative caches make tiling practically difficult

● Tiling is 
● Theoretically hard
● Computationally hard
● Practically hard

● N-tier tiling as described here is essentially impossible

● Compilers use heuristic-based approaches

Iteration Space tiling



“Eiger” ( A research project at Cray)

Data transformation is a hard problem. Tile decomposition is NP-hard

What structure does the hardware impose on the problem to help solve it?

C/Fortran
Loop Nest

1. Eiger + LLVM for general purpose tile optimiser

2. Per-task Eiger Analysis in Octopus workflow optimisation

gcc

icc

LLL



● DRAM is dominant main memory technology
● Stores data as charge in a capacitor
● Needs constant refresh 

● As opposed to SRAM which stores information in pairs 
of gates
● Does not need to be refreshed
● Takes less space than DRAM
● Much slower than DRAM
● Old SRAM designs were power hungry

● DDR is the standard implementation of DRAM

DRAM (main memory)



DRAM speeds

DDR5 (2019) 40 GB/s 0.6

This evolutionary development of DDR5 is not sufficient to close the memory wall
Hence, innovation has come above and below main memory



● Cache details
● Chapter 2 of Computer Architecture: A Quantitative Approach (5th

Addition), David Patterson and John Hennessy
● Iteration Space Tiling

● D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations 
of block algorithms. ACM SIGOPS Operating Systems Review 25(Special 
Issue)

● Optimizing Compilers for Modern Architectures: A Dependence-based 
Approach 1st Edition, Randy Allen and Ken Kennedy (book)

● Eiger
● Adjiashvili, U.-U. Haus, and A. Tate. Model-driven, automatic tiling with cache 

associativity lattices, arXiv preprint arXiv:1511.05585, 2015
● DRAM designs

● Chapter 2 of Computer Architecture 

More info



Emerging hierarchy
L1
L2

HBM
NV-DIMM

DDR5
NA-NVRAM

Flash



● Graphics companies spearheaded innovation in fast memory
● Core concept 

● DRAM packaged alongside processor on single substrate
● Stack up to 4 DRAM dies and memory controller together
● Connect them using through-silicon-via (TSV)

● Result: 
● higher bandwidth, less power, smaller form-factor than DRAM !

High-Bandwidth Memory (HBM)



● Intel’s KNL has a poor-man’s HBM (MCDRAM or HMC )
● AMD Fiji and NVIDIA Pascal have the first good HBM

● Limit on the number of stacks that can be supported (4 = 32GB, 
possibly 64GB)

● 6-7 pJ / bit   - compared to 30 pJ/bit for DDR

● Prices for HBM are currently high

● HBM should be a game-changer in HPC, no question

● Can be used in caching mode or accessed directly

HBM (cont)



DDR

L2

L1

0.5	ns	

32	KB

20 GB/s

2MB

Disk

~1  GB/s

128	GB

TB

64B

64B 7	ns	

64B

100	ns	

220 GB/s

500 GB/s

512B 10	ms

HBM 32	GB

1 TB/s 90	ns	



● Recall that DRAM requires constant refresh
● Energy costs of storing and moving data becoming too high
● Data lost after power cycle

● Non-volatile memories are the class of memories that store information 
in ways that do not need refresh

● Not a new general concept ( SSDs )
● However, various new technical innovations: 

● Intel’s 3dXPoint
● Phase Change Memory (PCM)
● Magnetoresistive memories (MRAM)
● Resistive RAM (ReRAM)
● Flash

● Most of these are a way from being viable HPC Components
● NV programming model – SNIA / pmem.io

Non-volatile memories



● (secret) microscopic material is packed 
into columns
● Contains a memory cell and a selector

● Cells are connected with a cross-structure
● To select any individual cell, any wire 

above and below is selected. 
● Selection happens without transistors –

these are voltage regulated. 
● Most interestingly : can be used as either 

memory or storage depending on the use-case
● Specs for 3dXpoint are secret, let’s assume 

● Similar bandwidth to DRAM
● Latency only 10x DRAM 
● Much higher capacity than DRAM
● Lower power requirements than DRAM & SSD
● Higher price (now)
● Cheaper price (later)

3dXpoint (Intel and Micron)

Disclaimer: The specs are taken from public information, may or not be correct



DDR

L2

20 GB/s

2MB

Disk

~1  GB/s

128	GB

TBs

64B 7	ns	

64B

100	ns	

220 GB/s

512B 10	ms

HBM 32	GB

1 TB/s 90	ns	

NV-DIMM	(3dXpoint) 1	TB

20 GB/s 1	µs	1-Bit



● Persistent storage for closely coupled applications – write 
and persist data
● E.g. in-situ analysis
● E.g. Coupled models (e.g. climate models)

● What about within one application? If : 
● Need more capacity than DRAM
● Need more bandwidth or lower latency than SSDs/Flash
● Can afford it

● Currently a niche, later may be everybody
● Today’s use case: certain types of in-memory databases
● If price becomes lower than DRAM, then it’s a win

Use-cases



● Solid-state memory invented in the 1980s by Toshiba
● Two types (NAND and NOR).
● Block addressable, like disk (not suited to memory)
● Any particular cell can be accessed O(1000) times only!
● Prices versus disk have plummeted recently
● Flash gaining traction in HPC as primary storage or as 

faster storage tier
● Expect to see no spinning disks in HPC systems very 

soon

Flash Memory



● Accessing local NV-RAM or SSD as storage cache is v. 
hard
● Have consistency and coherence costs

● Emerging concept is to use same 
technologies as fast storage cache

● First demonstrated as burst-buffer
● Now being used for more general I/O forms
● Cray DataWarp

Network attached NVRAM/SSD



Manager

c
M

c
M

c
M

c
M

c
M

c
M

c
M

c
M

PFS

c
M

c
M

c
M

c
M

c
M

c
M

c
M

c
M

simulation

analysis

Data Model
& Distribution

zmq

MPI
DPM zmq

Octopus ( research project at Cray )

SIMULATION

ANALYSIS

Inter

Define the 
use-cases for this



● Latency, bandwidth, capacity numbers of the new 
memories are 

● Also we must consider GPU memory (not covered 
here)
● Separate address space

● Does the hierarchy still hold up?

Is this a still hierarchy?



Primary Storage

Network-attached NVRAM/SSD

Node-local SSD

DIMM-based NVRAM

DDR5

CPU-HBMGPU-GBM

L3

L2

L1

A	somewhat	dysfunctional	
hierarchy

32kB

2MB

6MB

32GB

1TB

150 GB

2 TB

10 TB

500	GB/s

224	GB/s

100	GB/s

1	TB/s

25	GB/s

25	GB/s

3	GB/s

10	GB/s

0.5	ns	

7	ns	

100	ns	

10	ms

100	ns	

1	µs	

Hardware Controlled 

Programmed as memory

Programmed as storage

11ns



● Memory hierarchy as a concept is not useful anymore
● Need a graph-based set of connected memories + attribute
● NUMA effects compound this

● Future Memory programming:
● There will be no distinction between storage and memory
● A new wave of algorithmic analysis will focus on data usage
● Programming models will allow much more data expression

● Future processors will avoid the von Neumann Bottleneck 
altogether
● Dataflow processors will be resurrected!

The future

m2

m1

m3

• Capacity
• Accessibility
• Latency
• Bandwidth

m4



● 3dXpoint
● https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-

technology.html (warning: vile marketing)
● 3D XPoint memory – NAND flash killer or DRAM replacement? 

https://www.computerworld.com/article/3194147/data-storage/faq-3d-xpoint-memory-nand-
flash-killer-or-dram-replacement.html

● SNIA programming language 
https://www.snia.org/tech_activities/standards/curr_standards/npm

● Libpmem http://pmem.io/pmdk/
● HBM

● https://www.amd.com/en/technologies/hbm
● http://meseec.ce.rit.edu/551-projects/fall2016/1-4.pdf Ketan Reddy and Tyler Krupicka
● JEDEC HBM standard https://www.jedec.org/standards-documents/docs/jesd235a

● Cray Octopus
● See upcoming paper at Cray User Group 2018

● Dataflow processors
● The Manchester Dataflow Computer 

https://pdfs.semanticscholar.org/a81e/ccf02dc85e08fb34212ae56842366fe38678.pdf

More info



● Please feel free to contact me for more in-depth 
discussion

● adrian@cray.com

● www.cray.com/cerl


	Memory hierarchy lecture part 1
	Memory hierarchy lecture part 2

