

EMEA RESEARCH LAB

EXPERTISE kickoff training Memory Hierarchy

Adrian Tate Director, Cray EMEA Research Lab

This talk

- 1. Hardware trends and design constraints
- 2. Traditional memory hierarchy
- **3.** Future memory hierarchy

- Whirlwind tour of memory hierarchies and future memories
- No detail, but pointers to further reading for the HPC students
- slides will be made available

Why do we need to do something with memory?

- Memory is boring
- Why not just a single "flat" memory system?
- Fundamental issue with chosen model of computation
- Von Neumann Architecture (1945)

The von Neumann bottleneck :

computer system throughput is limited due to the relative ability of processors compared to top rates of data transfer

What is a memory hierarchy?

High latency

Von Neumann bottleneck

- Avoiding the Von Neumann bottleneck has historically been easy
- One or two-level cached memory
- Cache : A higher tier in the pyramid.
 - Fast (low latency, high bandwidth)
 - Expensive
 - Used often
- In modern times, this is not the case.
- Let's look at some trends and physics constraints in computer design

A supercomputer as scientific instrument

Then and now(-ish)

System Performance Perf/node Memory capacity /node Memory bandwidth /node Memory bandwidth / flop 160 MFLOPS 160 MFLOPS 8 MB 640 MB/s 4

27 PFLOPS 1.4 TFLOPS 37.5 GB 275 GB/s 0.196

<u>1054687 x</u> <u>8750 x</u> <u>4687 x</u> <u>430 x</u> <u>1/20 x</u>

Is the last point an anomaly?

Laws (trends)

 Moore's Law : transistor count double roughly every 18 months

- Remains true but the performance associated with it has tailed off
- Dennard Scaling : as transistors get smaller their <u>power</u> <u>density</u> stays constant, so that the power use stays in proportion with area
 - Ended in 2006
 - Response multicore processors

Dennard Scaling

Memory vs CPU Speed trend

CRAY

• Processors are getting wider, not faster

- The bandwidth to memory has not widened at the same rate
- In fact, this trend has been visible for decades :

Trends summarised (4 "walls")

- memory wall. The processor asks for data much faster than memory can give it to the processor
- ILP wall: We've squeezed out all the parallelism at this level
- power wall: Power requirements increase exponentially with processor speed. Beyond a certain point, speed improvements not practical.
- Thermal wall : Processors can no longer sink the heat generated during computation

Thoughts

- So the question often asked "why are CPUs not getting any faster" is actually irrelevant
- Although chips are not getting faster, they are still way too fast for the memory system to cope with
 - Recall the bytes/flop issue we unearthed on slide 1
- Additionally, we have two modern constraints
 - Power concerns
 - Explosion of data (covered elsewhere)
- (Much) faster Data processing is what is needed
 - This summarises "Exascale Computing"
 - Innovation in memory hierarchy is the response to this

Further Reading

History of Computing

- Turing's Cathedral, George Dyson (book)
- Trends
 - Computer Architecture: A Quantitative Approach (5th Addition), David Patterson and John Hennessy
 - Gets out of date quickly, so Google for modern trends
 - Georgia Tech Memory Hierarchy course: ECE 3056 course notes

Cache and memory design

 Computer Architecture: A Quantitative Approach (5th Addition), David Patterson and John Hennessy

Data-intensive science

• Synergistic challenges in data-intensive science and Exascale Computing

https://science.energy.gov/~/media/40749FD92B58438594256267425

Memory hierarchy (traditional)

• Want memory with

- Fast access
- Large capacity
- Inexpensive
- Incompatible requirements!
- Fortunately memory references are not random!
- Simulate the perfect memory by understanding data access
- Exploit "Locality"
 - Temporal locality
 - Spatial locality

- For single level of cache is already hard
 - Tile-size selection is NP-hard
 - Even for one memory tier!
- Associative caches make tiling practically difficult
- Tiling is
 - Theoretically hard
 - Computationally hard
 - Practically hard
- N-tier tiling as described here is essentially impossible
- Compilers use heuristic-based approaches

"Eiger" (A research project at Cray)

Data transformation is a hard problem. Tile decomposition is NP-hard What structure does the hardware impose on the problem to help solve it?

- 1. Eiger + LLVM for general purpose tile optimiser
- 2. Per-task Eiger Analysis in Octopus workflow optimisation

ERTISE

DRAM (main memory)

DRAM is dominant main memory technology

- Stores data as charge in a capacitor
- Needs constant refresh

As opposed to SRAM which stores information in pairs of gates

- Does not need to be refreshed
- Takes less space than DRAM
- Much slower than DRAM
- Old SRAM designs were power hungry

• DDR is the standard implementation of DRAM

DRAM speeds

DDR SDRAM Standard	Internal rate (MHz)	Bus clock (MHz)	Prefetch	Data rate (MT/s)	Transfer rate (GB/s)	Voltage (V)
SDRAM	100-166	100-166	1n	100-166	0.8-1.3	3.3
DDR	133-200	133-200	2n	266-400	2.1-3.2	2.5/2.6
DDR2	133-200	266-400	4n	533-800	4.2-6.4	1.8
DDR3	133-200	533-800	8n	1066-1600	8.5-14.9	1.35/1.5
DDR4	133-200	1066-1600	8n	2133-3200	17-21.3	1.2

DDR5 (2019)

40 GB/s 0.6

This evolutionary development of DDR5 is not sufficient to close the memory wall Hence, innovation has come above and below main memory

More info

• Cache details

 Chapter 2 of Computer Architecture: A Quantitative Approach (5th Addition), David Patterson and John Hennessy

Iteration Space Tiling

- D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of block algorithms. ACM SIGOPS Operating Systems Review 25(Special Issue)
- Optimizing Compilers for Modern Architectures: A Dependence-based Approach 1st Edition, Randy Allen and Ken Kennedy (book)

• Eiger

- Adjiashvili, U.-U. Haus, and A. Tate. Model-driven, automatic tiling with cache associativity lattices, arXiv preprint arXiv:1511.05585, 2015
- DRAM designs
 - Chapter 2 of Computer Architecture

High-Bandwidth Memory (HBM)

- Graphics companies spearheaded innovation in fast memory
- Core concept
 - DRAM packaged alongside processor on single substrate
 - Stack up to 4 DRAM dies and memory controller together
 - Connect them using through-silicon-via (TSV)

- Result:
 - higher bandwidth, less power, smaller form-factor than DRAM !

HBM (cont)

- Intel's KNL has a poor-man's HBM (MCDRAM or HMC)
 - AMD Fiji and NVIDIA Pascal have the first good HBM
- Limit on the number of stacks that can be supported (4 = 32GB, possibly 64GB)
- 6-7 pJ / bit compared to 30 pJ/bit for DDR
- Prices for HBM are currently high
- HBM should be a game-changer in HPC, no question
- Can be used in caching mode or accessed directly

Non-volatile memories

- Recall that DRAM requires constant refresh
 - Energy costs of storing and moving data becoming too high
 - Data lost after power cycle
- Non-volatile memories are the class of memories that store information in ways that do not need refresh
- Not a new general concept (SSDs)
- However, various new technical innovations:
 - Intel's 3dXPoint
 - Phase Change Memory (PCM)
 - Magnetoresistive memories (MRAM)
 - Resistive RAM (ReRAM)
 - Flash
- Most of these are a way from being viable HPC Components
- NV programming model SNIA / pmem.io

3dXpoint (Intel and Micron)

- (secret) microscopic material is packed into columns
 - Contains a memory cell and a selector
- Cells are connected with a cross-structure
- To select any individual cell, any wire above and below is selected.
- Selection happens without transistors these are voltage regulated.
- Most interestingly : can be used as either memory or storage depending on the use-case
- Specs for 3dXpoint are secret, let's assume
 - Similar bandwidth to DRAM
 - Latency only 10x DRAM
 - Much higher capacity than DRAM
 - Lower power requirements than DRAM & SSD
 - Higher price (now)
 - Cheaper price (later)

- E.g. in-situ analysis
- E.g. Coupled models (e.g. climate models)

• What about within one application? If :

- Need more capacity than DRAM
- Need more bandwidth or lower latency than SSDs/Flash
- Can afford it
- Currently a niche, later may be everybody
- Today's use case: certain types of in-memory databases
- If price becomes lower than DRAM, then it's a win

Flash Memory

- Solid-state memory invented in the 1980s by Toshiba
- Two types (NAND and NOR).
- Block addressable, like disk (not suited to memory)
- Any particular cell can be accessed O(1000) times only!
- Prices versus disk have plummeted recently
- Flash gaining traction in HPC as primary storage or as faster storage tier
- Expect to see no spinning disks in HPC systems very soon

Network attached NVRAM/SSD

- Accessing local NV-RAM or SSD as storage cache is v. hard
 - Have consistency and coherence costs
- Emerging concept is to use same technologies as fast storage cache
- First demonstrated as burst-buffer
- Now being used for more general I/O forms
- Cray DataWarp

Is this a still hierarchy?

- Latency, bandwidth, capacity numbers of the new memories are
- Also we must consider GPU memory (not covered here)
 - Separate address space
- Does the hierarchy still hold up?

The future

- Memory hierarchy as a concept is not useful anymore
- Need a graph-based set of connected memories + attribute

Capacity

Latencv

Bandwidth

m2

Accessibility

m1

m3

NUMA effects compound this

- There will be no distinction between storage and memory
- A new wave of algorithmic analysis will focus on data usage
- Programming models will allow much more data expression
- Future processors will avoid the von Neumann Bottleneck altogether
 - Dataflow processors will be resurrected!

m4

More info

CRAY

• 3dXpoint

- <u>https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html</u> (warning: vile marketing)
- 3D XPoint memory NAND flash killer or DRAM replacement? <u>https://www.computerworld.com/article/3194147/data-storage/faq-3d-xpoint-memory-nand-flash-killer-or-dram-replacement.html</u>
- SNIA programming language
 https://www.snia.org/tech_activities/standards/curr_standards/npm
- Libpmem http://pmem.io/pmdk/
- HBM
 - <u>https://www.amd.com/en/technologies/hbm</u>
 - <u>http://meseec.ce.rit.edu/551-projects/fall2016/1-4.pdf</u> Ketan Reddy and Tyler Krupicka
 - JEDEC HBM standard <u>https://www.jedec.org/standards-documents/docs/jesd235a</u>
- Cray Octopus
 - See upcoming paper at Cray User Group 2018
- Dataflow processors
 - The Manchester Dataflow Computer
 https://pdfs.semanticscholar.org/a81e/ccf02dc85e08fb34212ae56842366fe38678.pdf

Please feel free to contact me for more in-depth discussion

- adrian@cray.com
- www.cray.com/cerl

