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Memory Hierarchy



1. Hardware trends and design constraints

2. Traditional memory hierarchy 

3. Future memory hierarchy

● Whirlwind tour of memory hierarchies and future memories

● No detail, but pointers to further reading for the HPC students

● slides will be made available

This talk



● Memory is boring

● Why not just a single “flat” memory system?

● Fundamental issue with chosen model of computation

● Von Neumann Architecture (1945) 

Why do we need to do something with memory?

The von Neumann bottleneck :
computer system throughput is limited due to the relative 
ability of processors compared to top rates of data transfer



What is a memory hierarchy?
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● Avoiding the Von Neumann bottleneck has historically been easy

● One or two-level cached memory

● Cache : A higher tier in the pyramid. 
● Fast (low latency, high bandwidth)
● Expensive
● Used often

● In modern times, this is not the case. 

● Let’s look at some trends and physics constraints in computer 
design

Von Neumann bottleneck
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● Is the last point an anomaly? 

Then and now(-ish)

System Performance 160 MFLOPS 27 PFLOPS 1054687 x

Perf/node 160 MFLOPS 1.4 TFLOPS              8750 x      

Memory capacity /node        8 MB 37.5 GB 4687 x

Memory bandwidth /node     640 MB/s 275 GB/s 430 x

Memory bandwidth / flop      4 0.196 1/20 x 



● Moore’s Law : transistor count double roughly every 18 

months 

● Remains true but the performance associated with it has tailed off

● Dennard Scaling : as transistors get smaller their power 
density stays constant, so that the power use stays in 
proportion with area
● Ended in 2006
● Response – multicore processors

Laws (trends)



Dennard Scaling



● Processors are getting wider, not faster

● The bandwidth to memory has not widened at the same rate
● In fact, this trend has been visible for decades :

Memory vs CPU Speed trend



● memory wall. The processor asks for data much faster than 
memory can give it to the processor

● ILP wall: We've squeezed out all the parallelism at this level

● power wall: Power requirements increase exponentially with 
processor speed. Beyond a certain point, speed improvements 
not practical.

● Thermal wall : Processors can no longer sink the heat 
generated during computation

Trends summarised ( 4 “walls”)



● So the question often asked 
“why are CPUs not getting any faster”  
is actually irrelevant

● Although chips are not getting faster, they are still way too fast for the memory 
system to cope with

● Recall the bytes/flop issue we unearthed on slide 1

● Additionally, we have two modern constraints

● Power concerns
● Explosion of data (covered elsewhere)

● (Much) faster Data processing is what is needed

● This summarises “Exascale Computing” 
● Innovation in memory hierarchy is the response to this

Thoughts



● History of Computing 
● Turing’s Cathedral, George Dyson (book)

● Trends 
● Computer Architecture: A Quantitative Approach (5th Addition), 

David Patterson and John Hennessy
● Gets out of date quickly, so Google for modern trends 

● Georgia Tech Memory Hierarchy course: ECE 3056 course notes
● Cache and memory design

● Computer Architecture: A Quantitative Approach (5th Addition), 
David Patterson and John Hennessy

● Data-intensive science
● Synergistic challenges in data-intensive science and Exascale

Computing 
https://science.energy.gov/~/media/40749FD92B58438594256267425
C4AD1.ashx

Further Reading



● Want memory with
● Fast access 
● Large capacity
● Inexpensive 

● Incompatible requirements!

● Fortunately memory references 
are not random!

● Simulate the perfect memory
by understanding data access

● Exploit “Locality” 
● Temporal locality 
● Spatial locality 

Memory hierarchy (traditional)
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● For single level of cache is already hard
● Tile-size selection is NP-hard
● Even for one memory tier!

● Associative caches make tiling practically difficult

● Tiling is 
● Theoretically hard
● Computationally hard
● Practically hard

● N-tier tiling as described here is essentially impossible

● Compilers use heuristic-based approaches

Iteration Space tiling



“Eiger” ( A research project at Cray)

Data transformation is a hard problem. Tile decomposition is NP-hard

What structure does the hardware impose on the problem to help solve it?

C/Fortran
Loop Nest

1. Eiger + LLVM for general purpose tile optimiser

2. Per-task Eiger Analysis in Octopus workflow optimisation

gcc

icc

LLL



● DRAM is dominant main memory technology
● Stores data as charge in a capacitor
● Needs constant refresh 

● As opposed to SRAM which stores information in pairs 
of gates
● Does not need to be refreshed
● Takes less space than DRAM
● Much slower than DRAM
● Old SRAM designs were power hungry

● DDR is the standard implementation of DRAM

DRAM (main memory)



DRAM speeds

DDR5 (2019) 40 GB/s 0.6

This evolutionary development of DDR5 is not sufficient to close the memory wall
Hence, innovation has come above and below main memory



● Cache details
● Chapter 2 of Computer Architecture: A Quantitative Approach (5th

Addition), David Patterson and John Hennessy
● Iteration Space Tiling

● D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations 
of block algorithms. ACM SIGOPS Operating Systems Review 25(Special 
Issue)

● Optimizing Compilers for Modern Architectures: A Dependence-based 
Approach 1st Edition, Randy Allen and Ken Kennedy (book)

● Eiger
● Adjiashvili, U.-U. Haus, and A. Tate. Model-driven, automatic tiling with cache 

associativity lattices, arXiv preprint arXiv:1511.05585, 2015
● DRAM designs

● Chapter 2 of Computer Architecture 

More info



Emerging hierarchy
L1
L2

HBM
NV-DIMM
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NA-NVRAM

Flash



● Graphics companies spearheaded innovation in fast memory
● Core concept 

● DRAM packaged alongside processor on single substrate
● Stack up to 4 DRAM dies and memory controller together
● Connect them using through-silicon-via (TSV)

● Result: 
● higher bandwidth, less power, smaller form-factor than DRAM !

High-Bandwidth Memory (HBM)



● Intel’s KNL has a poor-man’s HBM (MCDRAM or HMC )
● AMD Fiji and NVIDIA Pascal have the first good HBM

● Limit on the number of stacks that can be supported (4 = 32GB, 
possibly 64GB)

● 6-7 pJ / bit   - compared to 30 pJ/bit for DDR

● Prices for HBM are currently high

● HBM should be a game-changer in HPC, no question

● Can be used in caching mode or accessed directly

HBM (cont)
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● Recall that DRAM requires constant refresh
● Energy costs of storing and moving data becoming too high
● Data lost after power cycle

● Non-volatile memories are the class of memories that store information 
in ways that do not need refresh

● Not a new general concept ( SSDs )
● However, various new technical innovations: 

● Intel’s 3dXPoint
● Phase Change Memory (PCM)
● Magnetoresistive memories (MRAM)
● Resistive RAM (ReRAM)
● Flash

● Most of these are a way from being viable HPC Components
● NV programming model – SNIA / pmem.io

Non-volatile memories



● (secret) microscopic material is packed 
into columns
● Contains a memory cell and a selector

● Cells are connected with a cross-structure
● To select any individual cell, any wire 

above and below is selected. 
● Selection happens without transistors –

these are voltage regulated. 
● Most interestingly : can be used as either 

memory or storage depending on the use-case
● Specs for 3dXpoint are secret, let’s assume 

● Similar bandwidth to DRAM
● Latency only 10x DRAM 
● Much higher capacity than DRAM
● Lower power requirements than DRAM & SSD
● Higher price (now)
● Cheaper price (later)

3dXpoint (Intel and Micron)

Disclaimer: The specs are taken from public information, may or not be correct
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● Persistent storage for closely coupled applications – write 
and persist data
● E.g. in-situ analysis
● E.g. Coupled models (e.g. climate models)

● What about within one application? If : 
● Need more capacity than DRAM
● Need more bandwidth or lower latency than SSDs/Flash
● Can afford it

● Currently a niche, later may be everybody
● Today’s use case: certain types of in-memory databases
● If price becomes lower than DRAM, then it’s a win

Use-cases



● Solid-state memory invented in the 1980s by Toshiba
● Two types (NAND and NOR).
● Block addressable, like disk (not suited to memory)
● Any particular cell can be accessed O(1000) times only!
● Prices versus disk have plummeted recently
● Flash gaining traction in HPC as primary storage or as 

faster storage tier
● Expect to see no spinning disks in HPC systems very 

soon

Flash Memory



● Accessing local NV-RAM or SSD as storage cache is v. 
hard
● Have consistency and coherence costs

● Emerging concept is to use same 
technologies as fast storage cache

● First demonstrated as burst-buffer
● Now being used for more general I/O forms
● Cray DataWarp

Network attached NVRAM/SSD
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● Latency, bandwidth, capacity numbers of the new 
memories are 

● Also we must consider GPU memory (not covered 
here)
● Separate address space

● Does the hierarchy still hold up?

Is this a still hierarchy?



Primary Storage
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● Memory hierarchy as a concept is not useful anymore
● Need a graph-based set of connected memories + attribute
● NUMA effects compound this

● Future Memory programming:
● There will be no distinction between storage and memory
● A new wave of algorithmic analysis will focus on data usage
● Programming models will allow much more data expression

● Future processors will avoid the von Neumann Bottleneck 
altogether
● Dataflow processors will be resurrected!

The future

m2

m1

m3

• Capacity
• Accessibility
• Latency
• Bandwidth

m4



● 3dXpoint
● https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-

technology.html (warning: vile marketing)
● 3D XPoint memory – NAND flash killer or DRAM replacement? 

https://www.computerworld.com/article/3194147/data-storage/faq-3d-xpoint-memory-nand-
flash-killer-or-dram-replacement.html

● SNIA programming language 
https://www.snia.org/tech_activities/standards/curr_standards/npm

● Libpmem http://pmem.io/pmdk/
● HBM

● https://www.amd.com/en/technologies/hbm
● http://meseec.ce.rit.edu/551-projects/fall2016/1-4.pdf Ketan Reddy and Tyler Krupicka
● JEDEC HBM standard https://www.jedec.org/standards-documents/docs/jesd235a

● Cray Octopus
● See upcoming paper at Cray User Group 2018

● Dataflow processors
● The Manchester Dataflow Computer 

https://pdfs.semanticscholar.org/a81e/ccf02dc85e08fb34212ae56842366fe38678.pdf

More info



● Please feel free to contact me for more in-depth 
discussion

● adrian@cray.com

● www.cray.com/cerl
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